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Abstract

Solid inserts located at the corners of differentially heated two-dimensional square enclosures with laminar natural

convection are used to control the heat rate within the enclosures. This numerical study employs air as the working

fluid, and the variables of interest are the number, location, size and thermal conductivity of the triangular cross-section

inserts. The major finding is that significant changes on the thermal performance of the enclosures can be achieved by

using the inserts, which, when appropriately selected, can act either as heat transfer enhancers or as insulators. Analyses

of the results, when the overall Nusselt number is the assessment parameter, show that it is viable, based on the

variables of interest, to optimise the thermal performance of the enclosure.

� 2003 Elsevier Science Ltd. All rights reserved.
1. Introduction

Natural convection in enclosures, and, in particular,

natural convection in rectangular or square enclosures,

is a widely studied problem [1,2], among many reasons,

the interest stems from its ‘‘richness’’ in heat transfer

and fluid mechanics features, such as, to name a few,

recirculation and stagnation regions, boundary layers,

jet deflection, and thermal entrainment. Therefore, it is

not surprising these configurations are often used as

benchmarking tests for CFD development [3,4]. Also,

much work related to the thermal performance of such

enclosures is available in the literature e.g. [5], where

enhanced thermal performance implies increased or de-

creased overall heat transfer, depending on the goal, i.e.

having the enclosure to act as a heat transfer promoter

or as a thermal insulator, respectively.

When the goal is to reduce the heat transfer across

the enclosure, ‘‘baffles’’ or fins (of finite or zero thermal

conductivity) are usually employed, resulting in parti-

tioned enclosures. The main effect is to trap the fluid,
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creating thermally stratified regions in rectangular

[2,4,6,7] and in non-rectangular enclosures [8,9]. To this

purpose, parallelogrammic enclosures were also consi-

dered. Sidewall angles and thermal boundary conditions

are critical variables in what concerns insulation effects

or heat transfer enhancement. Heat transfer can be

substantially augmented by the use of such enclosures

[10,11], where the parallelogrammic enclosure acts as a

thermal diode. Other studies also considered the influ-

ence of thermally diffusive walls [8,9,11–15]. Heat

transfer enhancement can also be achieved by creating

an unsteady resonant heat transfer problem through the

periodic change of the heating/cooling boundary con-

ditions [16,17].

This work is addressed to the study of steady state,

two-dimensional, laminar natural convection in square

enclosures, and the objective is to study numerically the

effect of solid inserts of triangular cross-section placed at

selected corners of a square enclosure upon the thermal

performance. The rationale for these inserts is to

‘‘compensate’’, if the target is to increase the heat

transfer rate, with high thermal conductivity inserts the

stagnation regions, which develop in the vicinity of the

corners. It should be mentioned these stagnation re-

gions, although to a lesser extent, are also common in the

turbulent regime [18,19]. Obviously, inserts of thermal
ghts reserved.
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Nomenclature

d side length of the insert

g gravitational acceleration

k thermal conductivity

H side length and height of the cavity

n normal to the solid–fluid interface

Nu Nusselt number

p pressure

Pr Prandtl number

Ra Rayleigh number

Rc thermal conductivity ratio

T temperature

u; v Cartesian velocity components

x; y Cartesian co-ordinates

Greek symbols

a thermal diffusivity

b volumetric expansion coefficient

m kinematic viscosity

q density

Subscripts

c pure conduction

C cold wall

H hot wall

f fluid

o overall

w solid insert

0 reference value

� dimensionless
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conductivity lower than the fluid�s will reduce the heat

transfer rate. Also, as will be discussed, inserts with a

thermal conductivity equal to the fluid, when their di-

mension exceeds the stagnation region, will reduce the

heat transfer rate, simply because the advection process

within the enclosure is inhibited.

There are different possible combinations for the

placement of the inserts at the inner corners; however,

exploratory studies only indicated three combinations of

interest. For each case, all solid inserts have equal di-

mensions and thermal conductivity.
Fig. 1. Physical model and geometry.
2. Mathematical and numerical modelling

2.1. Physical model

The domain under analysis is a two-dimensional

square enclosure filled with air, and with differentially

heated vertical walls. The horizontal walls are assumed

to be perfect thermal insulators. The working fluid (air)

is subjected to buoyancy effects, which set it into motion.

Solid inserts are placed at selected corners, as depicted in

Fig. 1. The solid inserts are made of non-zero thermal

conductivity material, and its geometry is such that their

cross-sections are triangles with angles of (90, 45, 45)

degrees.

2.2. Model assumptions

The enclosure is filled with a Newtonian-Fourier

fluid, which flows in steady and laminar conditions and

does not experience any phase change. This fluid is as-

sumed to be incompressible but experiences density

changes under the action of the temperature. This as-
sumption leads to the Boussinesq approximation, if the

maximum temperature difference is maintained within

certain limits [20,21]. The fluid density is assumed to be

constant throughout the governing equations, except for

the buoyancy term, in which the density is taken as a

function of the temperature with the thermal expansion

coefficient, b ¼ �ðoq=oT Þp=q, taken as constant. All the

thermal properties of the involved media (fluid and solid

inserts) are assumed to be constant, except, as men-

tioned before, the density appearing in the buoyancy

term.

The thermal levels and their differences within the

enclosure are assumed to be sufficiently small to consider

the effect of the thermal radiation upon the heat transfer
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process to be negligible. The energy terms due to viscous

dissipation and change of temperature due to reversible

deformation (work of pressure forces) were also ne-

glected.

2.3. Model equations

By introducing the dimensionless variables

u� ¼ uH=a; v� ¼ vH=a ð1Þ

x� ¼ x=H ; y� ¼ y=H ð2Þ

T� ¼ ðT � TCÞ=ðTH � TCÞ ð3Þ

and

p� ¼ ðp þ q0gyÞ=bq0ða=HÞ2c ð4Þ

(where p� is the dimensionless driving pressure), one

obtains the following set of partial differential equations

(Navier–Stokes equations) in normalized form, which

governs the problem under analysis

ou�
ox�

þ ov�
oy�

¼ 0 ð5Þ

o

ox�
ðu�u�Þ þ

o

oy�
ðv�u�Þ ¼ � op�

ox�
þ Pr

o2u�
ox2�

�
þ o2u�

oy2�

�
ð6Þ

o

ox�
ðu�v�Þ þ

o

oy�
ðv�v�Þ ¼ � op�

oy�
þ Pr

o2v�
ox2�

�
þ o2v�

oy2�

�

þ RaH PrT� ð7Þ

The energy conservation for the fluid is given by the

following normalized equation

o

ox�
ðu�T�Þ þ

o

oy�
ðv�T�Þ ¼

o2T�
ox2�

�
þ o2T�

oy2�

�
ð8Þ

and for the solid inserts

o2T�
ox2�

þ o2T�
oy2�

¼ 0 ð9Þ

From the foregoing equations the dimensionless pa-

rameters emerge

Pr ¼ m=a ð10Þ

RaH ¼ gbðTH � TCÞH 3=ma ð11Þ

The Prandtl, Eq. (10), and Rayleigh, Eq. (11), numbers

are commonly used when analyzing natural convection

heat transfer in enclosures filled with moderately small

Prandtl number––fluids [2]. To study the effects of the

inserts upon the heat transfer rates, two additional

dimensionless parameters are required. They will be in-

troduced under the discussion of the boundary condi-

tions.
2.4. Boundary conditions

Over the walls of the cavity, the non-slip condition is

imposed, namely,

u�ð0; y�Þ ¼ u�ð1; y�Þ ¼ u�ðx�; 0Þ ¼ u�ðx�; 1Þ ¼ 0 ð12Þ

v�ð0; y�Þ ¼ v�ð1; y�Þ ¼ v�ðx�; 0Þ ¼ v�ðx�; 1Þ ¼ 0 ð13Þ

as well as u� ¼ v� ¼ 0 over the solid inserts.

Over the vertical walls it is prescribed that

T�ð0; y�Þ ¼ 1; T�ð1; y�Þ ¼ 0 ð14Þ

The problem under analysis is a conjugated heat transfer

problem where, at each insert-fluid interface,�
� k

oT
on

�
f

¼
�
� k

oT
on

�
w

ð15Þ

or, in a dimensionless form,

oT�
on�

� �
f

¼ Rc
oT�
on�

� �
w

ð16Þ

where Rc ¼ kw=kf is the ratio between the thermal con-

ductivity of the inserts and of the fluid that fills the

cavity, and n is the direction normal to the solid–fluid

interface. The thermal conductivity ratio, Rc, is one of

the additional dimensionless parameters mentioned in

the previous section. The other dimensionless parameter

is related to the length of the solid inserts, which, in

normalized form, is given as d� ¼ d=H . At any point of

the solid–fluid (inserts) interface it is assumed that

Tf ¼ Tw. The horizontal boundaries of the enclosure are

perfectly insulated, therefore

oT�
oy�

� �
¼ 0 for y� ¼ 0 or y� ¼ 1 ð17Þ
2.5. Heat transfer parameters

The overall Nusselt number for a differentially heated

enclosure is evaluated as

Nu0 ¼
R H
0
�kðoT=oxÞH dyR H

0
�kðoT=oxÞc dy

¼
Z 1

0

�ðoT�=ox�Þdy� ð18Þ

where the subscript c refers to the pure conduction sit-

uation (i.e. stagnant fluid), and ðoT=oxÞH refers to the

temperature gradient in the x-direction calculated at

the x� ¼ 0 hot wall. The overall heat transfer across the

cavity, when the diffusive inserts at the corners are in

place, should consider the heat transfer occurring within

the inserts, both for the convective as well as for the pure

conduction situation. However, for practical reasons,

the reference pure conduction situation is taken as the

one corresponding to the enclosure without inserts

completely filled with stagnant fluid. This leads to
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kðH 	 1ÞðTH � TCÞ=H . This reference situation is well

suited for comparison purposes, as it is the usual refer-

ence for the overall Nusselt number definition in en-

closures [2,14]. The overall heat transfer corresponding

to the convective situation can be evaluated as the heat

input to the cavity, both through the fluid and through

the solid inserts, as the horizontal upper and lower walls

are adiabatic.

2.6. Numerical modelling

The set of differential equations (Eqs. (5)–(9)) is

solved using an equal order two-dimensional control

volume based finite element method, which is a two-

dimensional version of the one described in [22]. This

method leads to very reliable solutions for this kind of

problems. Over the fluid–solid interfaces, the conjugated

heat transfer problem is solved by using a constant

diffusion coefficient over each finite element. This prac-

tice is made possible by matching the mesh to the inserts

[22].

Several grid convergence independence tests were

conducted, and a 51	 51 uniform grid over the fluid

domain and the solid inserts offered a good compromise

between computational efficiency and grid indepen-

dence. The accuracy and suitability of this grid were

assessed by comparing the results against those of the

benchmark solution for the single square enclosure

natural convection heat transfer problem [3], and the

maximum deviation was less than 2%.
3. Results and analysis

3.1. Values for the dimensionless parameters

Four dimensionless parameters, as already men-

tioned, govern the conjugated heat transfer problem

under consideration, namely: The Prandtl number, Pr,
the H -based Rayleigh number, RaH, the thermal con-

ductivity ratio, Rc, and the dimensionless length of the

solid inserts, d�. The enclosure is filled with air, with an

average value for Pr of 0.73, therefore the effect upon the

heat transfer rate of the three dimensionless parameters,

and the different combinations for the inserts placement

at the corners of the square enclosure are required for

the analysis of the problem. The results are presented for

three different combinations of the inserts placement,

and they were obtained for RaH ¼ 104, 105 and 106,

which are typical values of this parameter for this kind

of enclosures. The values of Rc were selected as 1, 10,

100 and 1000. The dimensionless length of the solid in-

serts was taken in a range of interest from d� ¼ 0 (no

inserts) to d� ¼ 0:32.
The main objective under analysis is the overall

thermal performance of the enclosure, given by the
overall Nusselt number, Nu0, defined by Eq. (18). All the

reported changes in this Nu0 parameter are relative to

the Nusselt number of the single square enclosure, i.e.

without inserts at the corners.

3.2. Common trends on the obtained results

The analysis of the results reveals common trends in

what concerns the variation of the overall Nusselt

number with respect to the thermal conductivity ratio

and the dimension of the inserts, as shown in Fig. 2(a)–

(c) for RaH ¼ 104, in Fig. 3(a)–(c) for RaH ¼ 105, and in

Fig. 4(a)–(c) for RaH ¼ 106.

For each value of the Rayleigh numbers studied,

corresponds the overall Nusselt number for the single

enclosure situation with no inserts, namely Nu0 ¼ 2:24
for RaH ¼ 104, Nu0 ¼ 4:52 for RaH ¼ 105 and Nu0 ¼ 8:77
for RaH ¼ 106.

As expected, for Rc ¼ 1, the overall Nusselt number

decreases as d� increases. In fact, increasing d� for Rc ¼ 1

progressively leads to a pure conduction situation (i.e.

stagnant medium condition), and, in the limit, Nu0 

1:00 for d� ¼ 1:00. This decreasing behaviour of the

overall Nusselt number was for all cases studied when

Rc ¼ 1. This finding causes no surprise, as with Rc ¼ 1,

increasing value of d� yields progressive suppression of

the convective effects, i.e. for RaH ¼ 104, for instance

and for d� higher than �0.10 the difference between

�2.24 and subsequent values of Nu0 indicate a reduction

of the heat transfer rate by convection. For inserts made

out of materials, which yield values of Rc less than one,

the heat transfer rate will also decrease with the in-

creasing size of the insert (i.e. d� > 0).

Another common characteristic is that, for Rc > 1,

increases on the insert length yield invariably increases

of the overall Nusselt numbers. Higher values of Rc, as
expected, result in higher values of Nu0. This effect,

however, is more pronounced for small values of Rc, and
essentially ceases to exist for values of Rc greater than

100. In fact, there are only slight changes on the overall

Nusselt number when Rc changes from 100 to 1000, thus

indicating an asymptotic behaviour of the Nusselt

number with the limit corresponding to the results for

values of Rc close to 100. Moreover, the change of the

overall Nusselt number caused by varying Rc from 100

to 1000 is relatively insensitive to the value of RaH. This
means that inserts of high thermal conductivity increase

the overall thermal performance of the enclosure, and

that there are no significant increases in the thermal

performance for insert materials with kw=kP 100.

Therefore, with k � 0:026 W/(mK) for air, a reasonably

good value for the thermal conductivity of the inserts

would be kw � 2:6 W/(mK), a value which corresponds

to many metallic materials, or even non-metallic mate-

rials such as, for example, refractory materials, magne-

site brick, some rocks or silicon.



Fig. 2. Nusselt number variation with length of the inserts and

with the thermal conductivity ratio for the square enclosure

with RaH ¼ 104 for: (a) inserts placed at the upper-left and

lower-right corners; (b) inserts placed at the lower-left and

upper-right corners; and (c) inserts placed at all the corners.

Fig. 3. Results for the square enclosure with RaH ¼ 105. Re-

maining caption as for Fig. 2.
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For Rc ¼ 100 and 1000, the Nusselt number increases

almost linearly with d�, for d� > 0:10. For Rc ¼ 10 the

Nusselt number increases with d�, and it is strongly de-

pendent of the Rayleigh number. For Rc ¼ 10 and
RaH ¼ 106 a maximum value of the overall Nusselt

number occurs for a particular value of d�, which is

dependent upon the particular placements of the in-

serts.



Fig. 4. Results for the square enclosure with RaH ¼ 106. Re-

maining caption as for Fig. 2.
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3.3. Results for the enclosure with inserts at the upper-left

and lower-right corners

Fig. 2(a), for RaH ¼ 104, clearly indicates that an

increase of the insert length, for Rc > 1, yields increasing

values of the overall Nusselt number, a trend which is
also observed when Rc increase. The predicted increases

on the overall Nusselt number, for the limit of d� ¼ 0:32,
are of 8.7% for Rc ¼ 10, 12.9% for Rc ¼ 100 and 13.3%

for Rc ¼ 1000. For Rc ¼ 1, and over the range of values

considered for d�, the decrease of the Nusselt number is

of 5.8%. Figs. 3(a) and 4(a) for RaH of 105 and 106, re-

spectively, show similar trends to those described for

Fig. 2(a). Increasing values of RaH tend to increase

slightly the effect of Rc upon the overall Nusselt number,

namely with RaH ¼ 105: 5.9% for Rc ¼ 10, 11.3% for

Rc ¼ 100 and 12.1% for Rc ¼ 1000; with RaH ¼ 106:

11.0% for Rc ¼ 100 and 12.1% for Rc ¼ 1000, taking for

each of the two cases Rc ¼ 1 as the base case. At

RaH ¼ 106, due to the increased flow intensity is ob-

served for Rc ¼ 10 a maximum Nu0 of 9.08 for d� ¼ 0:24.
For both cases, RaH ¼ 105 and RaH ¼ 106, over the

range of values of d� the maximum decrease of the

Nusselt number is 10.3% and 14.8%, respectively, for

Rc ¼ 1.

With the objective of giving an in-depth physical

picture of the problem under consideration the dimen-

sionless velocity and temperature fields for RaH ¼ 106

and inserts of length d� ¼ 0:32 placed at the upper-left

and lower-right corners, are shown in Fig. 5(a) and (b)

for Rc ¼ 1, and in Fig. 6(a) and (b) for Rc ¼ 10. The

observations for the velocity and temperature fields are

essentially similar for the remaining cases.

In what concerns the flow field, the inserts produce

some �realignment� on the streamlines, and the resulting

135� corners yield lower blockages on the flow than

those for the original 90� angles of the enclosure without
inserts. This simple geometrical argument is corrobo-

rated by the results: the inserts enhance the flow within

the enclosure, and as a consequence, the overall Nusselt

number is also increased. Therefore, the inserts, in this

situation, act as heat transfer promoters. The observed

structure of the flow field remains essentially the same

for both situations of Rc ¼ 1 (Fig. 5(a)) and Rc ¼ 10

(Fig. 6(a)).

In what concerns the temperature field, it can be

noted a marked thermal stratification at the center of the

enclosure, the isotherms being clearly flat in this region,

both for Rc ¼ 1 (Fig. 5(b)) and Rc ¼ 10 (Fig. 6(b)). This

thermal stratification is a characteristic of the tempera-

ture fields for this type of problems, at this level of the

Rayleigh number. It should be mentioned that similar

behaviour is observed for enclosures without inserts at

the corners [3]. For Rc ¼ 1, as depicted in Fig. 5(b), the

isotherms spread over the solid inserts, thus giving rise

to lower temperature gradients near the upper-right and

lower-left corners. Lower temperature gradients lead to

lower Nusselt numbers, as it will be discussed. For

Rc ¼ 10 (Fig. 6(b)), the relatively high thermal conduc-

tivity of the solid inserts forces the isotherms toward the

opposite horizontal corner, resulting in higher thermal

gradients near the upper-right and lower-left corners,



Fig. 5. Results for the enclosure with solid inserts placed at the

upper-left and lower-right corners, for RaH ¼ 106, d� ¼ 0:32,

and Rc ¼ 1: (a) dimensionless velocity field; and (b) dimen-

sionless isotherms.

Fig. 6. Caption as for Fig. 3, but for Rc ¼ 10.

V.A.F. Costa et al. / International Journal of Heat and Mass Transfer 46 (2003) 3529–3537 3535
and in higher Nusselt numbers. Moreover, for relatively

high conductivity solid inserts, the ‘‘hot wall’’ and the

‘‘cold wall’’ contacting the fluid increase in length, its

effective length being nearly H � d þ
ffiffiffi
2

p
d ¼ H þ 0:44d.

This effect also leads to enclosures with better thermal

performance when acting as heat transfer promoters.

3.4. Results for the enclosure with inserts at the lower-left

and upper-right corners

The results obtained for inserts located at the lower-

left and upper-right corners, and for RaH ¼ 104, are

shown in Fig. 2(b). They present similar behaviour to

that previously observed for the enclosure with inserts at

the upper-left and lower-right corners. For this partic-
ular situation, for d� ¼ 0:32 it is noticed an increase for

the Nusselt number of 12.9% for Rc ¼ 10, 21.9% for

Rc ¼ 100 and 22.9% for Rc ¼ 1000. It is also observed,

as d� increases, the profile flattens for Rc ¼ 10. The

maximum observed decrease in the Nusselt number, for

Rc ¼ 1, when d� varies from 0 to 0.32, is 13.2%.

The case for RaH ¼ 105 is presented in Fig. 3(b). In

this case, the increases of the overall Nusselt number are

of: 5.7% for Rc ¼ 10, 17% for Rc ¼ 100 and 18.6% for

Rc ¼ 1000. For Rc ¼ 10 it is observed a maximum

Nusselt number, Nu0 ¼ 4:79, for d� ¼ 0:28. The maxi-

mum observed decrease in the Nusselt number is of

20.4%, for Rc ¼ 1 and for d� varying from 0 to 0.32.

The results for RaH ¼ 106 are presented in Fig. 4(b).

It is observed a similar behaviour for Rc ¼ 100 and

Rc ¼ 1000 cases. The augmentation on the overall

Nusselt number is of 16.3% for Rc ¼ 100 and 19.1% for



3536 V.A.F. Costa et al. / International Journal of Heat and Mass Transfer 46 (2003) 3529–3537
Rc ¼ 1000. For Rc ¼ 10, there is a maximum Nu0 ¼ 9:06
for d� ¼ 0:16. The maximum decrease in the Nusselt

number, for Rc ¼ 1, is of 27.8%.

Altogether, it can be concluded that the inserts

placed at the lower-left and upper-right corners, and

acting as heat transfer promoters (Rc > 1), yield enclo-

sures with better performance than those with the inserts

placed at the upper-left and lower-right corners. In what

concerns the decrease of the overall Nusselt number,

suitable for enclosures acting like thermal insulators

(Rc < 1), it is also a better practice the placement of the

solid inserts at the lower-left and upper-right corners.

3.5. Results for the enclosure with inserts at all corners

For RaH ¼ 104 with inserts at all corners, it can be

observed from Fig. 2(c) an increase on the Nusselt

number of 21.4% for Rc ¼ 10, 35.2% for Rc ¼ 100 and

36.9% for Rc ¼ 1000. It is also observed a marked ten-

dency toward to a flat profile for Rc ¼ 10 as d� increases.
The maximum decrease in the Nusselt number is of

19.0% for Rc ¼ 1, and with d� varying from 0 to 0.32.

The situation for RaH ¼ 105 is presented in Fig. 3(c),

where it can be observed essentially the same behaviour

as for the enclosure with inserts at the upper-left and

lower-right corners. In this case, the increases of the

overall Nusselt number are of: 12.0% for Rc ¼ 10, 30.7%

for Rc ¼ 100 and 33.4% for Rc ¼ 1000. It is also ob-

served that the profile for Rc ¼ 10 is essentially flat for

d� ¼ 0:32. The maximum observed decrease in the

Nusselt number is of 28.5% in this case.

The results for RaH ¼ 106 are presented in Fig. 4(c).

There is a strong increase on the overall Nusselt number,

which is of 30.6% for Rc ¼ 100 and of 35.6% for

Rc ¼ 1000. For Rc ¼ 10, there is a marked maximum,

Nu0 ¼ 9:36, for d� ¼ 0:20.
The main finding is that the inserts placed at all the

inner corners yield the best thermal performance among

the configurations studied either with the enclosure

acting as an heat transfer promoter (Rc > 1) or as an

insulator (Rc < 1). It should be noted also that, for

relatively high conductivity solid inserts, the effective hot

and cold wall length contacting the fluid is nearly

H � 2d þ 2
ffiffiffi
2

p
d ¼ H þ 0:88d.
4. Conclusions

This work presents a numerical study concerning the

use of solid inserts placed at the inner corners of dif-

ferentially heated square enclosures and its influence on

the overall thermal performance of such enclosures. The

study was limited to square enclosures and to a limited

set of the dimensionless governing parameters. Not-

withstanding, similar results would be expected for

rectangular enclosures with aspect ratios close to unity.
Square enclosures acting as enhanced thermal insu-

lators, suitable, for example, in some construction ele-

ments, can be obtained with inserts of low thermal

conductivity. In the limit, their thermal conductivity will

be of the same order of magnitude of the thermal con-

ductivity of the fluid that fills the cavity. Significant

improvements on the thermal performance of the en-

closure can be obtained with considerably small inserts

of low thermal conductivity materials, with reductions in

the heat transfer crossing the enclosure as high as 27.8%

for the cases studied.

On the other hand, square enclosures acting like heat

transfer promoters can be obtained through the use of

solid inserts made of materials with high or even with

moderate thermal conductivity. Results indicate that

good results can be obtained with relatively small length

inserts, with a thermal conductivity of the order of

magnitude of 100 times the thermal conductivity of the

air. Above this value, improved thermal conductors lead

to only slightly improvements of overall thermal per-

formances of the enclosures. For the cases studied, in-

creases as high as 35.6% are observed for the overall

Nusselt number.

The placement and number of solid inserts are

important factors, which can affect significantly the

thermal performance of the enclosure. The best config-

uration was, in terms of thermal performance (as an

insulator or heat transfer promoter), found to be the one

consisting of solid inserts placed at all the inner corners

of the enclosure.

A common result is that longer inserts lead to the

best performing enclosures, either acting as thermal in-

sulators or as heat transfer promoters. Such devices can

be seen as alternatives to the enclosure partitions, in

what concerns insulation performance. They do not

provide, however a universal solution to increase the

global thermal enclosure performance when acting as a

heat transfer promoter. A remarkable finding is the fact

that some combinations of the dimensionless governing

parameters lead to relative maxima on the heat transfer

crossing the cavity. This particular result may prove to

be of interest toward the design process.
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